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A dynamic equation of state is derived, describing the relationship between the 
pressure and volume of a thermal-nonequilibrium gas mixture. The methods of non- 
equilibrium thermodynamics are used to calculate the relaxation time. 

Processes of adiabatic compression and expansion of a gas containing solid and liquid 
particles are of definite practical importance [1-4]. The pressure--volume relationship in 
these processes is approximated by a polytropic dependence with a certain effective polytropy 
exponent; both equilibrium systems and media with temperature and velocity retardation of the 
particles are considered in this connection. A number of special results on the polytropy 
exponents of disperse systems have been generalized in [4]. For the analysis of theprocesses 
and certain thermodynamic properties of a gas mixture with solid particles Yasnikov [5] and 
Tolmachev [6] have used the relaxation formalism of the thermodynamics of irreversible pro- 
cesses [7-10]. 

The objective of the present study is to investigate the behavior of a mixture of a gas 
with solid particles on the basis of a dynamic equation of state. In deriving this equation 
we consider the gas to be ideal and assume that heat transfer with the solid particles takes 
place according to Newton's law. Introducing the deviations of the temperatures T and T s of 
the gas and particles from the equilibrium value To, $: = T -- To, ~2 = Ts -- To, we write the 
system entropy equation 

S = C x In (T O +i+ ~i) I C+ In (7" 0 +!- ~2) ~- f (x) -!- const. (1) 

Here x = p for an isobaric system, and x = V for an isochoric system. Following de Groot and 
Mazur [8], we write the entropy derivative in the form 

dS A d~ 
......... (2) 

d! T dt 

The affinity of each of the relaxation processes represents an element of the matrix A = T- 
g.~, where 

(+ =(+F~ ' 
g . . . .  ~ ) ~ = o  C+To2, ' ~ = ~  ~2 + (3) 

Expression (i) subject to the condition x = const is used in calculating the matrix elements 
gij. We write the phenomenological relations for the relaxation parameters ~ in the form 

d! A 
�9 - L. - m.~, (4) 

dt T 

where the matrix M is related to the matrix of kinetic coefficients L by the equation M = L| 
g. The kinetic coefficients can be evaluated on the basis of experimental data, but it is 
more practical to determine the heat-transfer coefficients ~ between the solid and gaseous 
phases. In light of this fact and relation (3) we write 

L = , m .... ( , (5) 
- -  o~oC F' o~oC71 

t c,,c+ cf 

where do = uf (s), u is the heat-transfer coefficient, and f(s) is the area of the heat-trans- 
fer surface. The eigenvalues of the matrix M determine the spectrum of relaxation times. In- 
asmuch as detM = 0, the characteristic polynomial of M has the form 
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Fig. i. Adiabatic compression (expansion) of a 
gas-- solid particles mixture at a particle con- 
centration p = 5. a) Data of [5]; b) data of 
[12]; i) k = 1.4 (pure gas); 2) k T = 1.370 (TV/ 
To = i0); 3) 1.206 (rV/TO = i); 4)1.069 (TV/ 
To = 0.I); 5) ko = 1.050 (equilibrium compres- 
sion). 

>$--)'SpM==%z--%~f(s) ( C~I ! C81 ). (6) 

The roots of this polynomial determine the isochoric-adiabatic and isobaric-adiabatic (x = V 
and x = p, respectively) relaxation times: 

~ ' -  -~ ;  ~v = -1- ~ ; (7)  

In the analysis of isochoric-adiabatic thermal relaxation of a polydisperse medium in 
[6] the type of affinity of the process is postulated, and the relaxation parameters are se- 
lected accordingly; in principle, this approach is not required in conjunction with the for- 
malism discussed above. Practical application of the relaxation spectrum of a polydisperse 
mixture is rendered exceedingly difficult by the need to determine the heat-transfer coeffi- 
cient between the gas and each fraction of solid material, particularly in concentrated sys- 
tems. Quite possibly methods similar to those developed in [ii] could prove useful here. 

If ~ = 0, then expression (4) acquires the following form with regard for (3) and (5): 

c~ aT'~ = o~f(~(T--T~). (8) 
dt 

For ~= = 0, rather than (7), we obtain the isochoric-isothermal relaxation time TTV = C v. 
(~f(s))-* and the igobaric-isothermal relaxation time TTp = Cp(af(s)) -~ of the gaseous phase. 

Writing the first law of thermodynamics for the given mixture, along with the equation 
of state of the gas, 

C, dT,  _ Cp dT V d p (9)  
dt clt dt ' 

pV = Ro T, R o -=~ MR,  (i0) 
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Fig. 2. Effective adiabatic exponent versus time' for ~ = i. I) 
�9 V/T0 = 0.i; 2) I; 3) i0. 

Fig. 3. Average adiabatic exponent kT versus particle concentra- 
tion. a) Results of this study; b) [5]; curves 1-3, same as in 
Fig. 2. 

together with (8) we obtain a closed system of equations describing the relationship between 
the volume and pressure in compression or expansion of the gas suspension. Eliminating the 
gas and particle temperatures T and T s from these equations, after straightforward but rather 
cumbersome transformations we obtain the dynamic equation of the process: 

- d } ~ -  dt  dt  z v - dt  ~ - -  - ~ . . . .  ( i  i ) Tp 

In this equation V(t) is a given function of the time, T V and Tp are described by relations 
(7), and k = Cp/C V is the adiabatic exponent of the pure gas. 

For large relaxation times (~x ~ =) Eq. (ii) is satisfied by the pure-gas adiabat pV k = 
const, and for small relaxation times by the adiabat for the equilibrium mixture pVko = const, 
where 

ko k - !C~C(  ~ 
"- 1 @ C~CV I -- k - - I v -  (12) Tp 

If the volume variation is specified by a function of the form 

then Eq. (ii) takes the form 

d2p dp  

v = Vo exp [-- ~tl ,  (13) 

p k~] z --= O, (14) 
TV TV 

where ko is given by relation (12). 

Assuming that only the pure gas is compressed at the initial time~ we obtain the initial 
condition for the derivative 

- - ~  ]~=o -- k~P~ (15) 

where Po = p(t = 0). Now the solution of Eq. (14) is written as follows: 

p ( t ) - - - - P o  ()~' =------~ exp[L2t] -- )~--~k exp[~.lt ] ) (16) 

where ~i and ~2 are the roots of the characteristic equation 

~1,2 = (k ~ 1)~ 2Xv + (k ' 1) ~ 2~v Tv _ / ~- --r -- - - -  (17) 

Using expression (13), we eliminate the time from (16) and obtain a relation between the 
variations of the pressure and volume of the gas: 
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P0 %~ -- %~ II -- ~z (18) 

This relation is plotted in Fig. 1 in logarithmic coordinates for a particle concentration 
= Ms/M = 5 and a relative relaxation time TV/To = 0.1 to 10. The characteristic time To 

of the process is simply related to the quantity B entering into the expression describing 
exponential time variation of the volume: to = 1/8. It is evident from the figure that as 
rV/To is increased from 0 to ~ the polytropy exponent increases from ko (for equilibrium com- 
pression) to k = 1.4 (for compression of the pure gas). Calculations show that the disparity 
between the results of [5, 12], represented by points in Fig. i, and our own data does not 
exceed 2%. 

Figure 2 gives the time dependence of the polytropy exponent for various ratios TV/To 
at ~ = i, and Fig. 3 gives the dependence of k r on ~ for various Tv/To. Here again we ob- 
serve good agreement with the data of [5], represented by dashed curves in the figure. 

Expression (17) can be written in the form 

1 { t~ . ~  , / [ ( k + l ) T ~  1~ ~o } . . . . . . .  k i k0 ---- , (19) 
'~ TV TV TV 

whence i t  f o l l o w s  t h a t  f o r  TV/To > 10 terms c o n t a i n i n g  the r e l a t i v e  i s o c h o r i c  r e l a x a t i o n  
t ime can be n e g l e c t e d .  Then ~, = 8k, t2 = 8, kr  = k; i . e . ,  the  mix ture  i s  compressed in  the  
same way as the  pure  gas .  

An a n a l y s i s  of  the  r e s u l t s  o f  p r e s s u r e  c a l c u l a t i o n s  accord ing  to e x p r e s s i o n s  (16) and 
(17) shows t h a t  the  compress ion  can be  r ega rded  as  e q u i l i b r i u m  fo r  Tv/ t  < 10, where t i s  the  
d u r a t i o n  of  the  p r o c e s s ,  and f o r  a r e l a t i v e  r e l a x a t i o n  t ime rV/ro < 1. Here the  average  p o l y -  
t r o p y  exponent  of  the  r e l a x a t i o n  p r o c e s s  d i f f e r s  from the  e q u i l i b r i u m  va lue  ko by not  more 
than 5%. 

In all other cases, i.e., for i < TV/To < i0 and Tv/t > i0, the exact solution (16), 
(17) must be used to calculate the parameters of the relaxation process. 

NOTATION 

T, Ts, temperatures of gas and particles, respectively; To, equilibrium temperature; p, 
V, pressure and volume of gas; R, gas constant; S, entropy of the system; Cs, total heat 
capacity of the particle material; Cp, CV, total heat capacities of the gas at p = const and 
V = const; ~ = Ms/M, fraction of particles associated with unit mass of the gas; M, mass of 
gas; MS, mass of particles; M, matrix of affinities of relaxation processes; L, matrix of 
kinetic coefficients; a, heat-transfer coefficient; f(s), area of heat-transfer surface; ~i, 
deviation of i-th parameter from its equilibrium value; t, time; rV, Tp, isochoric-adiabatic 
and isobaric-adiabatic relaxation times; TTV, TTp, isochoric-isothermal and isobaric-isother- 
mal relaxation times; k, adiabatic exponent of pure gas; ko, adiabatic exponent for equilib- 
rium compression of gas-- solid particles mixture; kT, effective adiabatic exponent (polytropy 
exponent) for nonequilibrium compression (expansion) of mixture. 
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IMPACT OF PARTICLES OF A GRANULAR MATERIAL ON A 

HARD SURFACE 

S. G. Ushakov, Yu. N. Muromkin, 
and V. E. Mizonov 

UDC 532.529.5 

The recovery coefficient for the particle velocities of a number of granular mate- 
rials of different sizes and shapes are determined experimentally. 

In mathematical simulation of the motion of pulverized materials, it is sometimes neces- 
sary to calculate the motion of particles after their impact on the apparatus walls. In 
this, it is necessary to know the recovery coefficient of the normal and the tangential com- 
ponents of the particle velocity k = W2n/Wln and k t = w=t/wl t and often their derivatives: 
the recovery coefficient of the total velocity n = w=/wl and the ratio of angles e = ~2/~. 
The problem of imperfectly elastic collision has been solved theoretically [1-3] only for 
spheres with a sufficiently large diameter, where the surface roughness can be neglected, 
while the recovery coefficient, which depends on the elastic characteristics of the particle 
and the surface, is either assigned or determined for an absolutely smooth surface. For the 
most important case -- fine particles of irregular shape -- a theoretical solution is apparently 
impossible, and the problem consists in obtaining reliable experimental relationships for 
certain materials with particles of any specific shape or slightly varying shapes. We shall 
present here the results of an experimental investigation of the rebound of particles with 
spherical and irregular shapes in relation to the particle dimension ~, the impact velocity 
w,, and the impact angle a~. 

We used small glass balls with the density 0 = 6600 kg/m s and small polystyrene balls 
(p = 1080 kg/m3), sorted by means of screens into the narrow particle size ranges ~ = 40-45; 
45-50; 50-56; 56-63; 63-70; 70-80; 80-90; 90-100; 100-125; 125-160 ~m (glass) and 315-400; 
400-500; 500-630 ~m (polystyrene), and also calibrated steel balls for ball bearings with 
diameters of 680 and 1000 ~m (p = 7960 kg/m3). For particles of irregular shape, we used 
coal (anthracite) particles in the same size ranges with p = 1350 kg/m 3 (within 160-630 ~m), 
corundum particles with 0 = 3900 kg/m 3 (100-315 ~m), and ferrochrome particles with 0 = 6910 
kg/m 3 (80-200 ~m). The uniformity of the shapes of coal, corundum, and ferrochrome particles 
has been confirmed by means of reflected-light microscopy. The ratio of the maximum grain 
size to the minimum size is equal to 2-3. This can probably be explained by the homogeneity 
of these materials and the fact that the same method of crushing (in a ball mill) is used. 
The diameter of a sphere with the equivalent mass, determined by weighing 300-1000 particles, 
is used as the characteristic size of a particle size range. The characteristic size is equal 
to the arithmetic mean of sizes at the extremes of a range with a scatter of • 

The particles are dropped vertically downward on an inclined ground steel plate at a 
velocity w~ = 0.5-30 m/see at an angle ~, = 15-70 ~ with respect to the normal to the plate 
at the point of impact. Their trajectories in the form of successive points are recorded on 
aerial photographic film, using illumination from an IFP-5000 flash bulb, supplied from a 
special source [4]. The flashing frequency is set within the range 200-500 Hz, depending on 
the impact velocity. The velocities w: and w2 are determined with respect to the spacing be- 
tween the points with an error of 2.5%, while the angles ~: and ~2 are determined with re- 
spect to tangents to the trajectories at the impact point with an error of 3%. The values 
of k, kt, n, and e for each range of particle sizes of the material under investigation are 
obtained by statistically processing 20-30 trajectories for spheres and 30-50 trajectories 
for particles of irregular shape. 
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